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Abstract

This paper deals with the free vibration analysis of a multi-span beam with an arbitrary number of
flexible constraints. Each span of the continuous beam is assumed to obey Timoshenko beam theory.
Considering the compatibility requirements on each constraint point, the relationships between two
adjacent spans can be obtained. By using a transfer matrix method, eigensolutions of the entire system can
be determined. Some numerical results are shown to present the effects of support stiffness and locations.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response of beam structures subjected to moving loads or masses has been studied
extensively. There are numerous references available in the monographs of Fryba [1,2]. In Refs.
[1,2], most of the cases treat a uniform simply supported beam of a single span and a continuous
railway bridge was also modeled in Ref. [1] as a multi-span beam. The earliest work on the
behavior of a single span beam subjected to a constant moving load was reported by Timoshenko
[3]. Subsequent studies considering the effects of an elastic foundation, moving masses, etc. Cai et
al. [4] investigated the dynamic interactions between the vehicle and guideway of magnetically
levitated vehicles by modeling the vehicle as a moving force and as a two-degree-of-freedom
see front matter r 2004 Elsevier Ltd. All rights reserved.
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model. Lee [5] studied the effects of an accelerating mass traveling on a Timoshenko beam and
investigated the possible separation of the moving mass from the beam.
There are not so many studies on the dynamic analysis of a multi-span continuous beam

subjected to moving loads or masses. Lee [6] analyzed the transverse vibration of a beam with
intermediate point constraints subjected to a moving load by assumed mode method. Wang [7]
investigated the desponse of multi-span Timoshenko beams. Yang et al. [8] presented impact
formulas for vehicles over continuous beams. Chatterjee et al. [9] investigated the dynamic
behavior of multi-span continuous bridges under a moving vehicular load which was modeled as a
sprung mass. Ichikawa et al. [10] also studied the dynamic behavior of multi-span continuous
beam traversed by a moving mass. In most of the previous studies, the model of Euler–Bernoulli
beam theory by deriving the differential equation and the associated boundary conditions for a
basic uniform Euler–Bernoulli beam are often used and discussed. This model is simpler; however,
it has some restrictions in the applications, especially, in cases of short beams [11]. Some
researches also study the different results between the models of Euler–Bernoulli beam theory and
Timoshenko beam theory. Finally, it is possible to evaluate natural frequencies simply by finding
roots of the high-order determinant of the coefficient matrix of the linear system if the accuracy of
the eigensolutions is required.
This investigation presents hybrid analytical/numerical method that permits an efficient

computation of the eigensolutions for an arbitrary number of flexible supports of a beam with
various boundary conditions. The method is based on the use Timoshenko beam theory in each
subsection, and by the compatibility conditions across each support, the relationships of the four
integration constants of the eigenfunctions between adjacent subsections can be determined
[12,13]. By using the transfer matrix, as a consequence, the entire system has only four unknown
constants which can be solved through the satisfaction of four boundary conditions. The novelty
of this approach is that the order of the determinant to obtain the eigenvalues does not increase as
the number of intermediate supports of the system increases. There are only four unknown
constants to be determined no matter how many intermediate supports exist. An analytical form
of eigenvalue problem is introduced which is solved using closed form, transfer matrix methods in
this article.
2. Theoretical model

A Timoshenko beam of length L and with k intermediate flexible supports is considered as in
Fig. 1. It is assumed that the supports are located at points X 1;X 2; . . . ;X k such that
0oX 1oX 2o � � �oX koL and with stiffness S1;S2; . . . ;Sk; respectively. The entire beam is
now divided into ðk þ 1Þ segments with lengths L1;L2; . . . ;Lkþ1 respectively which are separated
by k supports. The free vibration amplitudes of the transverse displacements and the slopes, due
to bending, of each segment are denoted by Y ðjÞðX ;TÞ and fðjÞðX ;TÞ on the interval
X j�1oXoX j, where the sub-index j in the parentheses represents the jth segment and j ¼

1; 2; . . . ; k þ 1 (Fig. 1). By using the Timoshenko beam theory [11,14] and under the following
assumptions: (i) under small displacements and strains (ii) with linear elastic material (iii) with
constant cross-section and density (iv) no applied external loads, the equations of motion for each
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Fig. 1. A beam with k flexible constraints located at positions X 1;X 2; . . . ;X k respectively and the lengths of sub-

sections are L1;L2; . . . ;Lkþ1 where L1 þ L2 þ � � �Lk þ Lkþ1 ¼ L:
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segment are [11]

EI
q4Y ðiÞðX ;TÞ

qX 4
þ rA

q2Y ðiÞðX ;TÞ

qT2
� rIð1þ

E

kG
Þ
q4Y ðiÞðX ;TÞ

qT2qX 2
þ
r2I
kG

q4Y ðiÞðX ;TÞ

qT4
¼ 0;

EI
q4fðiÞðX ;TÞ

qX 4
þ rA

q4fðiÞðX ;TÞ

qT2
� rIð1þ

E

kG
Þ
q4fðiÞðX ;TÞ

qT2qX 2
þ

r2I
kG

q4fðiÞðX ;TÞ

qT4
¼ 0;

X i�1oXoX i; i ¼ 1; 2; :::; k þ 1; ð1a;bÞ

where E is Young’s modulus of the material, I is the moment of inertia of the beam cross-section,
r is the density of material, A is the cross-sectional area of the beam, G is the shear modulus of the
material, k is the Timoshenko shear coefficient which is a function of the cross-section and
Poisson’s ratio n [11], and T is time.
The boundary conditions of the beam for a simply supported case are

Y ð0;TÞ ¼ Y ðL;TÞ ¼ 0; ð2aÞ

f0
ð0;TÞ ¼ f0

ðL;TÞ ¼ 0: ð2bÞ

The ‘‘compatibility conditions’’ enforce continuities of the displacement field, the slope and the
bending moment, respectively, across each support and can be expressed

Y ðiÞðX
�
i ;TÞ ¼ Y ðiþ1ÞðX

þ
i ;TÞ; ð3aÞ

Y 0
ðiÞðX

�
i ;TÞ ¼ Y 0

ðiþ1ÞðX
þ
i ;TÞ; ð3bÞ

EIf0
ðiÞðX

�
i ;TÞ ¼ EIf0

ðiþ1ÞðX
þ
i ;TÞ; ð3cÞ

where the symbols Xþ
i and X�

i denote the locations immediately above and below the position X i

and i ¼ 1; 2; . . . ; k:Moreover, a discontinuity into the shear force of the beam across each support
exists and can be expressed

kGA½Y 0
ðiÞðX

�
i ;TÞ � fðiÞðX

�
i ;TÞ	 ¼ kGA½Y 0

ðiþ1ÞðX
þ
i ;TÞ � fðiþ1ÞðX

þ
i ;TÞ	 � SiY ðX i;TÞ;

i ¼ 1; 2; . . . ; k: ð3dÞ
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In the above, the following quantities are introduced:

yðiÞ ¼
Y ðiÞ

L
; x ¼

X

L
; xðiÞ ¼

X ðiÞ

L
t ¼

Tffiffiffiffi
L

p ; li ¼
Li

L
: ð4a24dÞ

Thus, in each segment, Eq. (1a) and (1b) can then be expressed in the non-dimensional
form as

EI

L3

q4yðiÞðx; tÞ

qx4
þ rA

q2yðiÞðx; tÞ

qt2
�

rI

L2
1þ

E

kG

� �
q4yðiÞðx; tÞ

qt2qx2
þ

r2I
kGL

q4yðiÞðx; tÞ

qt4
¼ 0;

EI

L3

q4fðiÞðx; tÞ

qx4
þ rA

q2fðiÞðx; tÞ

qt2
�

rI

L2
1þ

E

kG

� �
q4fðiÞðx; tÞ

qt2qx2
þ

r2I
kGL

q4fðiÞðx; tÞ

qt4
¼ 0;

xi�1oxoxi; i ¼ 1; 2; :::; k þ 1: ð5a;bÞ

The non-dimensional ‘‘compatibility conditions’’ from Eqs. (3a) to (3d) are

yðiÞðx
�
i ; tÞ ¼ yðiþ1Þðx

þ
i ; tÞ; ð6aÞ

y0ðiÞðx
�
i ; tÞ ¼ y0

ðiþ1Þðx
þ
i ; tÞ; ð6bÞ

f0
ðiÞðx

�
i ; tÞ ¼ f0

ðiþ1Þðx
þ
1 ; tÞ; ð6cÞ

y0
ðiÞðx

�
i ; tÞ � fðiÞðx

�
i ; tÞ ¼ y0

ðiþ1Þðx
þ
i ; tÞ � fðiþ1Þðx

þ
i ; tÞ � siyðxi; tÞ; i ¼ 1; 2; . . . ; k; ð6dÞ

where

si ¼
SiL

kGA
:

3. Method to find eigensolutions

The eigensolutions for the cases of commonly used different boundary conditions are derived.
The solutions of the other boundary conditions can also be obtained easily through the similar
procedure. Using the separable solutions: yðiÞðx; tÞ ¼ wðiÞðxÞe

jot and fðiÞðx; tÞ ¼ jðiÞðxÞe
jot in Eqs.

(5a) and (5b) leads to an associated eigenvalue problem,

w0000
ðiÞ ðxÞ þ ðsþ tÞw00

ðiÞðxÞ � ða� stÞwðiÞðxÞ ¼ 0; xi�1oxoxi; i ¼ 1; 2; . . . ; k þ 1; ð7aÞ

j0000
ðiÞ ðxÞ þ ðsþ tÞj00

ðiÞðxÞ � ða� stÞjðiÞðxÞ ¼ 0; xi�1oxoxi; i ¼ 1; 2; . . . ; k þ 1; ð7bÞ

where

s ¼ rLo2

E
; t ¼

rLo2

kG
; a ¼

ArL3o2

EI
: ð7c2eÞ
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From Eqs. (6a)–(6d), the corresponding compatibility conditions across each flexible support
lead to

wðiÞðx
�
i Þ ¼ wðiþ1Þðx

þ
i Þ; ð8aÞ

w0
ðiÞðx

�
i Þ ¼ w0

ðiþ1Þðx
þ
i Þ; ð8bÞ

j0
ðiÞðx

�
i Þ ¼ j0

ðiþ1Þðx
þ
i Þ; ð8cÞ

w0
ðiÞðx

�
i Þ � jðiÞðx

�
i Þ ¼ w0

ðiþ1Þðx
þ
i Þ � jðiþ1Þðx

þ
i Þ � siwðxiÞ; ð8dÞ

for i ¼ 1; 2; . . . ; k: A closed form solution to this eigenvalue problem can be obtained by
employing transfer matrix methods [12,13]. The general solutions of Eqs. (7a) and (7b), for each
segment, are [14]

wðiÞðxÞ ¼ Ai cosh l1ðx � xi�1Þ þ Bi sinh l1ðx � xi�1Þ

þ Ci cos l2ðx � xi�1Þ þ Di sin l2ðx � xi�1Þ;

jðiÞðxÞ ¼ Biq1 cosh l1ðx � xi�1Þ þ Aiq1 sinh l1ðx � xi�1Þ

� Diq2 cos l2ðx � xi�1Þ þ Ciq2 sin l2ðx � xi�1Þ;

xi�1oxoxi; i ¼ 1; 2; :::; k þ 1 ð9a;bÞ

where

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� t
2

� �2
þ a

r
�

sþ t
2

 !1=2

; l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� t
2

� �2
þ a

r
þ
sþ t
2

 !1=2

; ð9c;dÞ

l3 ¼ ðrLo2=kGÞ
1=2; q1 ¼ ðl23 þ l21Þ=l1; q2 ¼ ðl23 � l22Þ=l2; ð9e2gÞ

and Ai, Bi, Ci and Di are constants associated with the ith segment ði ¼ 1; 2; :::; k þ 1Þ: These
constants in the (i+1)th segment (Ai+1, Bi+1, Ci+1 and Di+1) are related to those in the ith
segment (Ai, Bi, Ci and Di) through the compatibility conditions in Eqs. (8a)–(8d) and can be
expressed as

Aiþ1

Biþ1

Ciþ1

Diþ1

8>>><
>>>:

9>>>=
>>>;

¼

t11 t12 t13 t14

..

.

. . . . . . . . . t44

2
664

3
775
ðiÞ Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;

¼ T
ðiÞ
4�4

Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; . . . ; k; ð10Þ
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where T
ðiÞ
4�4 is the 4� 4 transfer matrix which depends on the values l1, l2, (thus, eigenvalue o) and

the elements are derived in Appendix A and are rewritten here

t11 ¼ cosh l1li;

t12 ¼ sinh l1li;

t13 ¼ 0;

t14 ¼ 0;

t21 ¼ sinh l1li �
l2si

l1q2 þ l2q1
cosh l1li;

t22 ¼ cosh l1li �
l2si

l1q2 þ l2q1
sinh l1li;

t23 ¼ �
l2si

l1q2 þ l2q1
cos l2li;

t24 ¼ �
l2si

l1q2 þ l2q1
sin l2li;

t31 ¼ 0;

t32 ¼ 0;

t33 ¼ cos l2li;

t34 ¼ sin l2li;

t41 ¼
l1si

l2q1 þ l1q2
cosh l1li;

t42 ¼
l1si

l2q1 þ l1q2
sinh l1li;

t43 ¼ � sin l2li þ
l1si

l2q1 þ l1q2
cos l2li;

t44 ¼ cos l2li þ
l1si

l2q1 þ l1q2
sin l2li:

ð10a2pÞ

Through repeated application of Eq. (10), the four constants in the first segment (A1, B1, C1 and
D1) can be mapped into those of the last segment, reducing the number of independent constants
to four.

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>><
>>>:

9>>>=
>>>;

¼ T
ðkÞ
4�4

Ak

Bk

Ck

Dk

8>>><
>>>:

9>>>=
>>>;

¼ T
ðkÞ
4�4 T

ðk�1Þ
4�4

Ak�1

Bk�1

Ck�1

Dk�1

8>>><
>>>:

9>>>=
>>>;

¼ T
ðkÞ
4�4 T

ðk�1Þ
4�4 . . .Tð1Þ

4�4

A1

B1

C1

D1

8>>><
>>>:

9>>>=
>>>;
: ð11Þ

These four remaining constants (A1, B1, C1 and D1) can be found through the satisfaction of the
boundary conditions.
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For the case of a simply supported beam, the corresponding boundary conditions of Eqs. (2a)
and (2b) can thus be expressed

Y ð0;TÞ ¼ 0 ! wð0Þ ¼ 0; ð12aÞ

Y ðL;TÞ ¼ 0 ! wð1Þ ¼ 0; ð12bÞ

f0
ð0;TÞ ¼ 0 ! j0ð0Þ ¼ 0; ð12cÞ

f0
ðL;TÞ ¼ 0 ! j0ð1Þ ¼ 0: ð12dÞ

Beginning with those at the left support, Eqs. (9a), (9b), (12a) and (12c), leads to
A1 ¼ 0 and C1 ¼ 0: ð13a;bÞ

Satisfaction of the boundary conditions of Eqs. (9a,b) at the right supports, Eqs. (12b) and (12d)
require

Akþ1 cosh l1lkþ1 þ Bkþ1 sinh l1lkþ1 þ Ckþ1 cos l2lkþ1 þ Dkþ1 sin l2lkþ1 ¼ 0; ð14aÞ

Akþ1q1l1 cosh l1lkþ1 þ Bkþ1q1l1 sinh l1lkþ1 þ Ckþ1q2l2 cos l2lkþ1 þ Dkþ1q2l2 sin l2lkþ1 ¼ 0;

ð14bÞ

which can be expressed in matrix form as

0

0

( )
¼

cosh l1lkþ1 sinh l1lkþ1 cos l2lkþ1 sin l2lkþ1

q1l1 cosh l1lkþ1 q1l1 sinh l1lkþ1 q2l2 cos l2lkþ1 q2l2 sin l2lkþ1

" #

�

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ B2�4

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð15aÞ

where

B2�4 ¼
cosh l1lkþ1 sinh l1lkþ1 cos l2lkþ1 sin l2lkþ1

q1l1 cosh l1lkþ1 q1l1 sinh l1lkþ1 q2l2 cos l2lkþ1 q2l2 sin l2lkþ1

� �
: ð15bÞ

Substitution of Eq. (11) into Eq. (15a) and the use of Eq. (13a,b) leads to

0

0

( )
¼ B2�4

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ B2�4T
ðkÞ
4�4T

ðk�1Þ
4�4 . . .Tð1Þ

4�4

A1

B1

C1

D1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ R2�4

A1

B1

C1

D1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
r11 r12 r13 r14

r21 r22 r23 r24

" # 0

B1

0

D1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð16Þ
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where

R2�4 ¼ B2�4 T
ðkÞ
4�4 T

ðk�1Þ
4�4 . . .Tð1Þ

4�4 ¼
r11 r12 r13 r14

r21 r22 r23 r24

� �
:

Thus, the existence of non-trivial solutions requires

det
r12ðoÞ r14ðoÞ

r22ðoÞ r24ðoÞ

� �
¼ 0: ð17Þ

This determinant provides the single (characteristic) equation for the solution of the eigenvalue
on. The coefficients of the eigenfunctions, wnðxÞ; are obtained by back substitution into Eqs. (16),
(10) and then Eq. (9).
For the cases of other usually used boundary conditions, through the similar procedure, the

following relations can be obtained:
(a) Cantilever beam: The existence of non-trivial solutions for the constants A1, B1, C1 and D1

requires

det
r11 � r13 r12 � r14

r21 � r23 r22 � r24

� �
¼ 0: ð18Þ

The matrix B2�4 in Eq. (15a) now becomes

B2�4 ¼
q1l1 cosh l1lkþ1 q1l1 sinh l1lkþ1 q2l2 cos l2lkþ1 q2l2 sin l2lkþ1

ðl1 � q1Þ sinh l1lkþ1 ðl1 � q1Þ cosh l1lkþ1 �ðl2 þ q2Þ sin l2lkþ1 ðl2 þ q2Þ cos l2lkþ1

� �
:

ð19Þ

(b) Fixed-fixed beam: The existence of non-trivial solutions is the same as Eq. (18) but the
matrix B2�4 in Eq. (15a) now becomes

B2�4 ¼
cosh l1lkþ1 sinh l1lkþ1 cos l2lkþ1 sin l2lkþ1

l1 sinh l1lkþ1 l1 cosh l1lkþ1 �l2 sin l2lkþ1 l2 cos l2lkþ1

� �
: ð20Þ

(c) Free-free beam: The existence of non-trivial solutions now requires

det

r11 �
l1q1
l2q2

r13 r12 �
l1 � q1
l2 þ q2

r14

r21 �
l1q1
l2q2

r23 r22 �
l1 � q1
l2 þ q2

r24

2
664

3
775 ¼ 0 ð21Þ

and the matrix B2�4 in Eq. (15a) now is the same as Eq. (19).
4. Numerical results and discussion

The method for obtaining the eigenvalues (natural frequencies) proposed in this article is that of
finding the non-trivial solutions of the determinants in Eqs. (17), (18) and (21) for various
boundary conditions. These are nonlinear algebraic equations which can be solved by using the
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Fig. 3. Lowest four eigenvalues of a simply supported beam with one flexible constraint at mid-point as the stiffness of

support S varies.
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standard Newton–Raphson iterations or, for simplification, by using the method as shown in
Fig. 2 to obtain the eigenvalues.
The Timoshenko shear coefficient k in the governing equations (Eqs. (1a) and (1b)) is used to

simplify the non-uniform shear stress distribution at a cross-section to retain the one-dimensional
approach. There are virtually as many different definitions of k as there are published papers on
the Timoshenko beam. Here, Cowper’s definition of k, which is a function of a cross-section and
Poisson’s ratio n [11]. For the following numerical cases of the square cross-section used in this
article, the value k ¼ 10ð1þ nÞ=ð12þ 11nÞ is used.
In order to show the method used in this article, some numerical examples are presented. First

is the case of a simply supported beam structure with one flexible support at the mid-point. The
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beam is square cross-section with width B ¼ 0:05 m; height H ¼ 0:05 m; total length L ¼ 5:0 m;
span lengths L1 ¼ L2 ¼ 2:5 m; density r ¼ 7800 g=m3; Young’s modulus E ¼ 2:06� 1011 N=m2;
shear modulus of elasticity G ¼ 79� 109 N=m2 and Poisson’s ratio n ¼ 0:3: Fig. 3 shows the
lowest four natural frequencies of this system obtained by the method presented in this research as
the stiffness S is increased. There are two sets of curves in Fig. 3 which represent the results by
Bernoulli beam theory (dashed curves) and Timoshenko beam theory (solid curves), respectively.
From Fig. 3, it is observed that these two sets of curves almost coincide in the lower modes. There
is a little difference in the fourth mode and the variations will be more in higher modes. Also note
that, because system is symmetric in this case (the flexible support is at the mid-point), the
constraint point is a node to the second and the fourth modes (refer to Fig. 4), so the nature
frequencies of these two modes are not affected by the stiffness of the support. The first and the
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Table 1

Lowest four natural frequencies for cases of large constraint stiffness (S ¼ 10; 000; 000N=m and

S ¼ 100; 000; 000N=m) and the case for stiff intermediate support from Ref. [15]

Lowest four natural

frequencies (Hz)

Constraint stiffness

S ¼ 10; 000; 000N=m
Constraint stiffness

S ¼ 100; 000; 000N=m
Stiff support [15] (S=N)

f 1 18.738 18.738 18.614

f 2 28.004 29.143 29.122

f 3 74.802 74.802 74.566

f 4 80.317 93.306 94.362
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Fig. 5. Variations of lowest four mode shapes for large support stiffness: (a) stiffness S ¼ 10; 000; 000N=m; (b) stiffness
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third frequencies increase as the stiffness of the support increases. Fig. 4a–c shows the lowest 4
mode shapes for different constraint stiffness. Curves in Fig. 4a (S ¼ 0N=m) are typical mode
shapes for a simply supported beam. Curves in Fig. 4b (S ¼ 800; 000N=m) and Fig. 4c
(S ¼ 1; 000; 000N=m) are shown in positions ‘‘A’’ and ‘‘B’’, respectively, in Fig. 3. Although the
shapes in Fig. 4b and Fig. 4c look similar, however, the first mode is symmetric and the second
mode is anti-symmetric in Fig. 4b, contradictorily, the first mode is anti-symmetric and the second
mode is symmetric in Fig. 4c. There is a ‘‘cross over’’ at point ‘‘C’’ in Fig. 3, and before this point,
the first mode is symmetric and after this point, the first mode is anti-symmetric. When the
constraint stiffness is large enough, the system can be regarded as a system with an intermediate
stiff support (deflection of the intermediate support d ¼ 0). Table 1 shows the comparison results
of the stiff support from [15] and the results from this article for cases of large constraint stiffness
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for the same example shown above. Fig. 5a and 5b shows the mode shapes for the cases of large
constraint stiffness, S ¼ 10; 000; 000N=m and S ¼ 100; 000; 000N=m; respectively.
For multi-span example cases, the system is the same described above, but increasing the

number of constraints. Fig. 6a and 6b shows the variations of the first and second natural
frequencies by increasing the number of flexible supports N for different support stiffness
(S ¼ 10000; 100000; 500000N=m and 1000000N/m). Each support is assumed to have the same
stiffness and with equal spans. As the number of supports is increased, the spans become shorter
and shorter. When a span is short enough, then the shear deformation effects cannot be ignored,
in which case the results of the Euler–Bernoulli beam model are no longer valid. The Timoshenko
beam model, in which the shear deformation effect has been considered, and, thus, its applications
are much wider than those of the traditional Euler–Bernoulli beam model.
5. Conclusions

A hybrid analytical/numerical solution method is developed that permits the efficient
evaluation of eigensolutions for a vibration beam with an arbitrary finite number of flexible
constraints. The method utilizes a numerical implementation of a transfer matrix solution to an
analytical form of the equation of motion. There are only four undetermined coefficients in the
method proposed in this article which can be solved by the application of boundary conditions.
The dimension of the matrix is independent of the number of constraints in this method. The main
feature of this method is to decrease the dimension of the matrix involved in the finite element
methods and some other analytical methods.
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Appendix A. Transfer matrix derivation

The compatibility conditions across the ith support (i ¼ 1; 2; . . . ; k) are represented in Eqs.
(8a)–(8d).

wðiÞðx
�
i Þ ¼ wðiþ1Þðx

þ
i Þ; ð8aÞ

w0
ðiÞðx

�
i Þ ¼ w0

ðiþ1Þðx
þ
i Þ; ð8bÞ

j0
ðiÞðx

�
i Þ ¼ j0

ðiþ1Þðx
þ
i Þ; ð8cÞ

w0
ðiÞðx

�
i Þ � jðiÞðx

�
i Þ ¼ w0

ðiþ1Þðx
þ
i Þ � jðiþ1Þðx

þ
i Þ � siwðxiÞ: ð8dÞ
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By using the general solutions, Eqs. (9a) and (9b), the above equations can be expressed as

Aiþ1 þ Ciþ1 ¼ Ai cosh l1li þ Bi sinh l1li þ Ci cos l2li þ Di sin l2li; ðA:1Þ

Biþ1l1 þ Diþ1l2 ¼ Ail1 sinh l1li þ Bil1 cosh l1li � Cil2 sin l2li þ Dil2 cos l2li; ðA:2Þ

Aiþ1q1l1 þ Ciþ1q2l2 ¼ Biq1l1 sinh l1li þ Aiq1l1 cosh l1li þ Diq2l2 sin l2li þ Ciq2l2 sin l2li; ðA:3Þ

Biþ1q1 � Diþ1q2 ¼ ðBiq1 cosh l1li þ Aiq1 sinh l1li � Diq2 cos l2li þ Ciq2 sin l2liÞ

� siðAi cosh l1li þ Bi sinh l1li þ Ci cos l2li þ Di sin l2liÞ: ðA:4Þ

Solving for Eqs. (A.1)–(A.4) leads to the following recursion formulae for the constants
Aiþ1;Biþ1;Ciþ1 and Diþ1:

Aiþ1

Biþ1

Ciþ1

Diþ1

8>>><
>>>:

9>>>=
>>>;

¼

t11 t12 t13 t14

..

.

. . . t44

2
664

3
775
ðiÞ Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;

¼ T
ðiÞ
4�4

Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; . . . ; k:

Here, T
ðiÞ
4�4 is a transfer matrix composed of the elements

t11 ¼ cosh l1li;

t12 ¼ sinh l1li;

t13 ¼ 0;

t14 ¼ 0;

t21 ¼ sinh l1li �
l2si

l1q2 þ l2q1
cosh l1li;

t22 ¼ cosh l1li �
l2si

l1q2 þ l2q1
sinh l1li;

t23 ¼ �
l2si

l1q2 þ l2q1
cos l1li;

t24 ¼ �
l2si

l1q2 þ l2q1
sin l1li;

t31 ¼ 0;

t32 ¼ 0;

t33 ¼ cos l1li;

t34 ¼ sin l1li;

t41 ¼
l1si

l2q1 þ l1q2
cosh l1li;
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t42 ¼
l1si

l2q1 þ l1q2
sinh l1li;

t43 ¼ � sin l2li þ
l1si

l2q1 þ l1q2
cos l2li;

t44 ¼ cos l2li þ
l1si

l2q1 þ l1q2
sin l2li:
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